Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Yousif M. Makeen

Yousif M. Makeen

University of Malaya, Malaysia

Title: Hydrocarbon source potential of Tertiary carbonaceous shale, shale and siltstone of eastern Chenor, Penyu basins, Pahang, Malaysia

Biography

Biography: Yousif M. Makeen

Abstract

Malaysia and Asian region have a number of petroleum-bearing sedimentary basins commonly associated with coal and carbonaceous shale strata. Shales are the common source rocks of conventional petroleum resources whilst coal although a source for conventional liquid hydrocarbons, are more widespread as unconventional resources, such as cannel coal and coal bed methane (CBM). Coals within the oil and gas producing provinces of Malaysia and SE Asian region in general are known to be oil-prone. However, with the inevitable decline in conventional petroleum, remaining hydrocarbons will be more difficult to find and more expensive to develop. Set against the backdrop of world energy consumption projected to increase 49% by 2035, alternative sources of energy are being sought. Petroleum geoscientists are exploring unconventional source/reservoir systemssuch as the carbonaceous shale, oil shale, tight sand, coal bed methane and fractured basement. In this study, shale and siltstone which are an importance sedimentary facies for hydrocarbon exploration in the eastern Chenor, Pahang have been investigated using organic geochemical and petrological methods as well as Micro-CT, SEM (Scanning Electron Microscope). The tertiary sediments of eastern Chenor show a general trend of low thermal maturity based on vitrinite reflectance measurements (<0.5% Ro) and Tmax (<435 oC). Organic petrological studies revealed that analyzed carbonaceous shale and shales are rich in liptinite macerals (>20 vol.%) such as aliginite (Botryococcus algae), sporinite, cutinite and amorphous organic matter indicating oilprone Type-I and Type-II kerogens. Pyrolysis data also show a trend from predominant oil-prone Type-I and II kerogens to mixed oil and gas-prone Type II-III kerogens within the studied samples except for the siltstones samples which have low HI value indicating no potential for hydrocarbon generation. The EOM result shows that all the carbonaceous shale samples possess excellent values for the bitumen/EOM and hydrocarbon (HC) content. The studied shale samples have very good petroleum potential. However, analyzed siltstones show poor to fair petroleum potential based on for the bitumen/EOM and hydrocarbon (HC) content. This is supported by plots of TOC content versus extractable organic matter (EOM) and hydrocarbon yields versus TOC content commonly used in estimating the hydrocarbon generative potential of the source rocks.